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The behaviour of granular material in motion is studied from a continuum point of 
view. Insofar as possible, individual grains are treated as the ‘molecules’ of a granular 
‘fluid ’. Besides the obvious contrast in shape, size and mass, a key difference between 
true molecules and grains is that collisions of the latter are inevitably inelastic. This, 
together with the fact that  the fluctuation velocity may be comparable to the flow 
velocity, necessitates explicit incorporation of the energy equation, in addition to the 
continuity and momentum equations, into the theoretical description. Simple 
‘ microscopic ’ kinetic models are invoked for deriving expressions for the ‘ coefficients ’ 
of viscosity, thermal diffusivity and energy absorption due to collisions. The 
‘coefficients’ are not constants, but are functions of the local state of the medium, 
and therefore depend on the local ‘temperature ’ and density. I n  general the resulting 
equations are nonlinear and coupled. However, in the limit s -4 d ,  where s is the mean 
separation between neighbouring grain surfaces and d is a grain diameter, the above 
equations become linear and can be solved analytically. An important dependent 
variable, in this formulation, in addition to the flow velocity u,  is the mean random 
fluctuation (‘thermal’) velocity ii of an individual grain. With a sufficient flux of 
energy supplied to the system through the boundaries of the container, ii can remain 
non-zero even in the absence of flow. The existence of a non-uniform is the means 
by which energy can be ‘conducted’ from one part of the system to another. Because 
grain collisions are inelastic, there is a natural (damping) lengthscale, governed by 
the value of d ,  which strongly influences the functional dependence of ~rs on position. 
Several illustrative examples of static (u = 0) systems are solved. As an example of 
grain flow, various Couette-type problems are solved analytically. The pressure, shear 
stress, and ‘thermal’ velocity function . r ~  are all determined by the relative plate 
velocity U (and the boundary conditions), If @ is set equal to zero a t  both plates, the 
pressure and stress are both proportional to U 2 ,  i.e. the fluid is non-Newtonian. 
However, if sufficient energy is supplied externally through the walls (ii .$: 0 there), 
then the forces become proportional to the first power of U .  Some examples of 
Couette flow are given which emphasize the large effect on the grain system proper- 
ties of even a tiny amount of inelasticity in grain-grain collisions. From these calcula- 
tions i t  is suggested that, for the case of Couette flow, the flow of sand is supersonic 
over most of the region between the confining plates. 

1. Introduction 
It is the purpose of this paper to outline a theory of grain flow which is based upon 

the description of continuous matter fields as usually encountered in fluid mechanics. 
Until fairly recently the topic of grain flow as a subject of theoretical attention has 
languished in a state of inattention from physicists and fluid mechanicians. Despite 
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t'he ubiquitous appearance of granular matter in industrial, agricultural and geological 
context's, and the concomitant need to transport, control and understand it ,  it is only 
wibhin recent years that  theoretical work has begun to progress beyond the pioneering 
investigat'ions of Bagnold (1954, 1956). Many of the investigations which have been 
carried out' to date have dealt with the general form of the flow equations (Cowin 
1978; Oshima 1978; Ackermann & Shen 1978; Savage 1979), while others have turned 
attention to  an elucidation of the physical phenomena that underlie, a t  the level of 
the individual grain, the overall flow patterns (Ogawa 1978; McTigue 1978; Ogawa, 
Umemura &. Oshima 1980). 

The recent contribution of Savage & Jeffrey (1981), which was brought to  the 
attention of the writer after the present work was completed, is in the latter category. 
These authors adopt) a molecular picture of grain motion which has much in common 
with the point of view taken here. Their approach, however, is to a large extent 
complement>ary to ours. I n  this paper we have attempted to  write down a set of 
complete, if heuristic, equations, which are modelled insofar as possible on the usual 
equations of hydrodynamics. The equations are heuristic in that they are not derived 
in a rigorous scnse from the underlying particle interactions. Rather, the appropriate 
conservation laws are expressed in terms of macroscopic variables judged to be 
suitable, and, where required, an appeal to a very definite picture of grain-grain 
interactions is made in order to specify completely the various constitutive relations. 
I n  the paper of Savage & Jeffrey, the stress tensor is calculated by appeal to particle 
distribution functions, so that a more definite link to the microscopic nature of the 
fluid is achieved. However, an explicit treatment of the energy equation is not 
attempted by them, with the result that  solutions for the flow require additional 
assumpbions which are not necessary in the present work. 

Jenkins & Savage (1981) have stressed the importance of the fluctuation or 
'thermal' velocity in any complete mDdel of rapid shear flow, and, using analogies 
with fluid turbulence, h a w  formulated the boundary-value problem for rapidly 
sheared granular materials, although they did not solve their model. In  the work 
presented here, a complete model is formulated by direct appeal to the nature of 
grain-grain collisions, and explicit solutions for simple flow geometries are obtained. 
This formulation, like that of Jenkins & Savage (1981) avoids the difficulties of the 
original Bagnold model, which, as pointed out' by Jenkins & Cowin (1979), fails for 
certain shear flows. (In particular, the present model predicts a uniform horizontal 
stress in vertical channel flow.) 

In  the work of Ogawa (1978) the explicit incorporation of the equation governing 
the thermal velocity was advocated. Ogawa et al. (1980) applied this idea to the 
development of constitutive equations and solved several boundary-value problems 
in a simple kinematic model. However, their formulation of the flow problem was 
incomplete in the sense that some flow field variables (e.g. the density) were not 
explicitly determined. I n  the present work, all such flow-field variables are determined 
self-consistently ; the model has no adjushble parameters, but depends only upon 
quantities related to  the nature of the grain-grain interaction.? 

In  the work reported here, once the equations have been written down they are 
solved essentially exactly and analytically. Although this typically requires a flow 
geometry or circumst>ancc which is inconvenient or unrealistic for practical experi- 

t After this paper had been submitted for publication the works of Ackermann & Shen (1982) 
and Shen & Ackermann (1982) appeared in print. These authors developed a constitutive relation 
which is free of arbitrary parameters. bu t  did not attempt, a self-consistent solution of the flow 
equations. 
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mental purposes, i t  is felt that  the insights obtainable from exact analytical solutions 
are worth this price. In  the future it may turn out that  pieces of the theoretical picture 
proposed here require modification, but we believe that the general nature of the 
approach described below has much to recommend it. Not of least importance is the 
interest attaching to a consistent treatment of self-exciting systems of the type often 
exemplified by grain flows. The equations and solutions below represent a definite 
and consistent description of a model containing many of the characteristics one 
would expect in a typical grain system, and the study and explication of these 
equations and solutions is therefore useful and interesbing. 

2. Some comparisons between granular systems and simple fluids 
Before continuing on with the matter of writing down possible flow equations, it 

is worthwhile listing some of the ways in which granular systems can be compared 
and contrasted with simple fluid systems. 

2 , i .  Grain size 'us. molecule size 

As far as the constituent particles are concerned, the most obvious difference between 
grains and molecules lies in their size (or mass). A sand grain, which we take as an 
archetypal grain particle, is of the order of 10l8 times more massive and voluminous 
than say a water molecule. This difference, although striking, is not a particularly 
fundamental one as far as the microscopic description of particle motions are 
concerned - both can be treated according to  the laws of classical mechanics. 
However, grain size has an important bearing on the applicability of the continuum 
hypothesis as discussed below. 

2.2. Conservation of energy 

Although the trajectories of both grains and molecules can be described by classical 
mechanics, the quantum-mechanical nature of the molecule is exhibited by its ability 
to  undergo completely elastic collisions. Grains, however, are totally classical, and 
every collision always involves a loss of kinetic energy which appears as true heat 
in the grains which collide. I n  granular systems, the fact that  grain-grain collisions 
do not conserve kinetic energy leads to a strikingly different behaviour of the 
macroscopic system from what would be expected for a molecular fluid. This is true 
even if the inelastic loss per collision is very small. 

2.3. Grains are not identical particles 

ITnlike molecules, grains are not identical particles : no two grains look precisely alike. 
It is to be expected that the existence of an essentially continuous spectrum of grain 
sizes in a given granular system would introduce significant complications into the 
effort to find a succinct theoretical description of that  system. I n  the work reported 
here we specialize to grain systems where all particles are roughly the same size. It 
is not expected that small differences in size will have large effects on the motion, 
other factors remaining the same. 

2.4. Grain-grain interactions are noncentral 

Because real grains are not exactly spherical - and some are very far from spherical - 
and because the surfaces of grains are typically rough, so that frictional (tangential) 
forces can exist, the grain-grain force is not central. This means that in most 
grain-grain collisions mutual torques are exerted, and therefore grain rotation, or 
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spin, must accompany the motion of any real granular system. Although molecules 
are not necessarily spherical, many are reasonably round, and in the molecular case 
there is no analog to the macroscopic friction force. I n  this paper we assume the grain 
to be a t  least approximately spherical, and we neglect the effect of grain spin. 
Rotation is included in the computer-simulation calculations of Campbell & Brennen 
(1982) and the inclusion of grain rotation at a formal level has been addressed by 
Oshima (1978), but no analytic solutions that include rotation seem to be available. 

2.5. The validity of the continuum hypothesis 

Because of the size of the grain particles, i t  follows that their number density is much 
smaller than the number density of particles in the corresponding molecular fluid. 
This raises some doubts about the validity of the usual continuum hypothesis. A cubic 
mm of water contains about 1019 molecules, but the same volume of sand might 
contain only - 10 grains or less. In  a hydrodynamic system, some macroscopic 
quantity, such as the flow velocity, could change significantly over a distance of 1 mm, 
but the number of molecules involved is so huge that we can imagine dividing up 
1 mm3 into still smaller volumes, each containing many molecules, across whose linear 
dimensions the change in flow velocity is very small. However, if a quantity like flow 
velocity changes rapidly over 1 mm in the case of a sand-grain system, it is no longer 
clear that the continuum picture applies. 

If the only lengthscale in an experiment involving granular flow were the grain size 
itself, then we would expect the continuum hypothesis to apply equally well to  
hydrodynamical systems and to granular matter (because there would be essentially 
no way to distinguish between the two systems). However, there are at least two 
further, independent, lengths that always enter any grain flow experiment. One of 
these is the size of the container confining the system. The ratio of this linear 
dimension to the molecular diameter might be on the order of lo8, while the 
corresponding ratio would be only lo3 for a typical sand-grain system (and sand grains 
are very small compared with many granular particles of interest). For this reason, 
in any real experiment, granular systems are always ‘lumpy’ in a sense which can 
never be removed by scaling. 

Another lengthscale, which we shall investigate in detail below, arises from the 
inevitable existence of inelasticity in grain-grain collisions. To see this, it  is useful 
to consider the response of the system to a localized input of energy. After a certain 
average number of collisions n, the total kinetic energy in the pulse will be degraded 
by a factor e-l. The corresponding radius of the pulse a t  that time provides the desired 
lengthscale Zi. If the inelasticity is not small, n will not be large, and therefore Zi 
will be only a few multiples of the grain diameter.t Thus, at least as far as energy 
transport is concerned, it is not difficult to conceive of situations where substantial 
changes in macroscopic quantities can occur over distances measured in small 
numbers of grain diameters. Making the best of this situation, we specialize to those 
situations where the continuum hypothesis is not obviously violated, and in those 
situations we assume that it is valid. 

2.6. Grain-grain interactions have no long-range attraction 
Typically the molecule-molecule force in a fluid has a repulsive core due to the 
exclusion principle, and a weak but relatively long-range attractive piece which is 

t In the present paper we consider only systems where the grains are close together, i.e. where 
the average separation of the centres of adjacent grains is only slightly greater than a diameter. 
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FIGURE 1. The average separation of neighbouring grains, diameter d ,  is designated as s. 

responsible for phenomena like surface tension, and which figures importantly in the 
evaluation of fluid parameters such as the viscosity. I n  the grain systems that we 
consider in this paper, the (elastic part of the) grain-grain interaction is taken to be 
infinite, as in hard-sphere scattering, and there is assumed to be no attractive part. 
It is imagined that in the flow of dry sand, or of similar material, this ideal interaction 
picture is closely approached. If electrical charging effects are deemed to  be important 
in particular cases, or if surface films present on the grains cause a certain amount 
of cohesion, then the approximations and assumptions adopted here will have to be 
revised accordingly. 

2.7. The binary collision hypothesis 
A simplifying assumption frequently made for molecular fluids, though of doubtful 
validity for non-dilute systems, is that  only pairwise collisions are important in the 
dynamical evolution of the fluid. This assumption certainly breaks down in principle 
a t  densities where the tails of the molecular potentials of nearest neighbours in the 
fluid begin to  overlap substantially. However, in a true hard-sphere fluid, because 
of the lack of such potential tails, the binary collision hypothesis will remain valid 
a t  essentially all densities. (In the granular case, the range IT of the surface interaction 
is of course not zero, but is determined by features such as small-scale surface 
roughness; however, the ratio of interaction-range to grain size a/d < 1.  For 
molecules, the equivalent ratio is on the order of unity.) This hypothesis, therefore, 
may be a much better one for granular systems of the type to be described here than 
for molecular fluid systems. 

3. The physical state of the medium 
We have already referred to certain assumptions about the physical state of the 

particles making up the granular systems to be discussed here, i.e. the particles are 
assumed to be spherical, or nearly so, to be without cohesion, and so forth. I n  addition 
to  these requirements, we will restrict ourselves to  bulk mass densities p that  are large 
enough that the average spacing between nearest neighbours is always less than the 
grain diameter d. If s is the average separation distance of grain surfaces between 
nearest neighbours, as illustrated in figure 1, then it is always assumed that 
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For many grain flows, this condition is probably fairly well obeyed over a large 
fraction of the flow volume. However, it will develop that it is easy to generate 
solutions to the equations of motion which violate (3.1), and which are therefore 
inconsistent with the conditions used for setting up the equations in the first place. 
All solutions must therefore be checked against (3.1) before being accepted. 

When (3.1) is true, there is a simplification in the equations of motion which results 
from the fact that the density p is nearly constant. The dependence of p on s is 

so that 

under condition (3.1). This has the practical effect that derivatives of the density can 
usually be put equal to zero, with a concomitant reduction in the complexity of the 
equations. 

On the other hand, we anticipate that the transport process will typically involve 
a collision rate proportional to s-l. Since s-l can range over most of the interval [d-', 
001 and still satisfy (3.1), it is clear that the transport properties are very sensitive 
to s and therefore to the density; i.e. although the density is nearly constant, so that 
there is little variation in inertial terms due to changes in p,  the very small changes 
in density that do occur are critical for describing the transport of various physical 
quantities, and this dependence on density must be retained. 

It must also be pointed out that (3.2) is true only in some average sense. That is, 
there need not be a one-to-one relation between the spacing parameter s and the 
density p. For high densities, the mode of grain packing will influence the density. 
Thus, in principle, p might be written as a function both of s and a (local) coordination 
number v. The developments in this paper are predicated upon the assumption that 
(3.2) can be written as an equality with a constant of proportionality calculated from 
some effective value p of v. If this is true, the precise value of ij is unimportant because 
we attempt here only to illustrate the general trends and dependences of the theory. 
However, it is necessary to be aware that in proceeding along this path some part 
of the dynamics may be lost. For example, under suitable conditions the system might 
be able to perform oscillations between coordination states, at  fixed s. In light of the 
complexity of the flow equations, as discussed below, it seems to be necessary at  
present to adopt the assumption of essentially constant v, and we do so henceforth. 

Another qualification is that although we require p to be large so that s 4 d ,  we 
do not allow the possibility s = 0. In any given collision, of course, the separation 
between the colliding grains goes to zero, but s defined a t  that point nevertheless 
remains non-zero since it is the average over a number of grains in the vicinity of 
that point. If in fact s+O in some portion of the flow volume, then the rheology of 
the flow may be different from that which is described in this paper. For s = 0 the 
grains would in general not lose contact for extended periods of time, but would scrape 
and slide over one another. For s =+ 0, the grains continually bounce against one 
another like molecules in a fluid. It is the latter circumstance treated here. Clearly 
there are situations where s = 0;  this is the case in a pile of grains at rest, for instance. 
But with sufficiently energetic flow (high shear rate), it can be anticipated that a 
rheology describable in terms of grain-grain collisions will be realized (Ogawa 1978 ; 
McTigue 1978; Ogawa et al. 1980; Savage & Jeffrey 1981). 

A final remark is required about the role of interstitial fluid. The results of this 
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paper are all based upon the assumption that the grain trajectories between collisions 
are unaffected by the presence of air, water or other fluid. Strictly speaking then the 
present calculations apply to  grain flow in a vacuum. However, the effects of an 
interstitial fluid are expected to be small if the effective viscosity due to grain-grain 
collisions, as described in 55.2, is substantially larger than the viscosity of the 
intergranular fluid. For sufficiently dense grains, this condition seems to  be met if 
the fluid filling the pores is air. (We may note, conversely, that momentum transport 
by grain collisions may play a role in the behaviour of fluidized beds (Marble 1964).) 

With these assumptions i t  is now possible to proceed directly to the equations 
describing grain flow. 

4. The equations of motion 
4.1. The ~ n t i n u i t ~  equation 

Ifu = (ul, u,, u3) is the macroscopic flow velocity ofthegrain system, then conservation 
of mass leads, as in fluid mechanics, to 

aP a -+- (put)  = 0, 
at axt 

where x = (x l ,  x2,  x3) is the position coordinate. Repeated indices are summed. Since 
we have taken p x constant, the above equation leads to  

w.u = 0. (4.2) 

4.2 The momentum equation 
We wish to write down an equation describing the conservation of momentum for 
a granular system. I n  hydrodynamics, the momentum equation (Navier-Stokes 
equation) incorporates a viscous force term which is proportional to aui/axk. The 
proportionality coefficient 7,  the dynamic viscosity, can be dimensionally composed 
of a density, a length and a velocity. I n  hydrodynamics, that  velocity is very nearly 
the thermal velocity, which to a good approximation is constant, and therefore in 
many cases 7 can be taken to be a constant parameter. I n  granular flow, a similar 
viscous term can be constructed dimensionally, but since the only velocity in the 
problem is often just the flow velocity, the viscous force term is nonlinear in u, and 
hence the flow must be non-Newtonian. This approach has been used by others to  
generate a momentum equation (Bagnold 1954; McTigue 1978). 

The approach taken here differs slightly in philosophy. Since flow velocities are 
supposed to vary slowly from point to point in the granular system, and since 
viscosity arises from the relative motion of different parts of the system, there is no 
reason a t  this stage to suppose that the viscous force term differs in form from the 
corresponding result for a true hydrodynamic system. Accordingly we take the 
momentum equation to be given by the Navier-Stokes form 

(4.3) 

wherep = p ( x ,  t )  is the pressure and gi is a component of the gravitational acceleration 
g. In  writing (4.3) we have made use of (3.1) in order to eliminate the term involving 
second viscosity. 

The quantity r,~ can be called a viscosity coefficient, but i t  plays a more active role 
here than it does in hydrodynamics. The transport properties of the medium depend 
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upon the relative velocity of neighbouring grains. Although in general this velocity 
must scale with lul, i t  need not have the directional property of the flow velocity. 
Therefore, as the simplest assumption, we take 7, and other similar ‘coefficients’, to 
depend upon the energy of the flow. It follows that a consistent description of grain 
flow systems must necessarily involve the energy equation, in addition to (4.1) and 

4.3. The energy equation 

The conservation of energy, like conservation of momentum, is taken here to be 
essentially of the hydrodynamic form, 

(4.3). 

+ pui gi - I. (4.4) 

The introduction of the energy equation into the description of granular flow has been 
attempted by Ogawa (1978) and Ogawa et al. (1980), and the presence of a fluctuating 
velocity component has been discussed by Jenkins & Cowin (1979). The velocity ij 
is the analog in the granular system of a thermal velocity. Accordingly, K functions 
like a thermal diffusivity. (However, like 7, its form and values will be determined 
by the state of flow, as discussed below.) Since we have partitioned the energy into 
two parts, overall flow kinetic energy &u2 and internal energy &v”, i t  is not surprising 
that &tiz should behave much like a ‘temperature’ of the system. This parallel 
provides a convenient and expressive way of discussing the behaviour and attributes 
of such systems. We shall use this language, but caution that there is no implication 
that a complete thermodynamic analogy pertains. For example, the grain system is 
usually far from equilibrium, and it is not known whether the velocity distribution 
function, at a point where the internal (translational) energy per particle is &nv”, is 
in fact characterized by a Maxwell-Boltzmann form with ‘ kT’ corresponding to 
(Note that Savage & Jeffrey (1981) assume a Maxwellian distribution.7) 

The quantity I gives the rate at which energy is lost from the system due to the 
fact that grain-grain collisions are inelastic. Like 7 and K,  I depends on the collision 
rate, and hence on ij and s. Simple models for these three quantities, as well as for 
the equation of state, are given in $5. 

5. The microscopic model 
5.1. The equation of state 

In  order to proceed further, it  is necessary to relate the pressure p ,  the transport 
coefficients 7 and K ,  and the energy-sink term I to the variables appearing in the 
various conservation equations. I n  order to determine these relationships, we make 
use of the simple picture provided by the cell model (Hirschfelder, Curtiss & Bird 
1964). The central grain is imagined to vibrate with average speed tiin a random way 
so as to exert pressure p on the surrounding grains. 

A typical momentum transfer in a grain-grain collision is of the order of mti. The 
collision time is 

7 N s/a. 

t Evidence tha t  such a distribution obtains has been found by C. Campbell at Caltech (private 
communication) in Monte Carlo simulations of grain flow. See also Carlos C Richardson (1968), who 
showed t h a t  the velocity distribution functions for tracer particles in a fluidized bed were 
approximately Maxwellian. 
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Therefore the pressure exerted on the walls of the cell is 

mV 1 
P - l p  

since s 4 d implies that the surface area of the cell is proportional to  d 2 .  Collecting 
constant factors, this can be written as 

f l  
p = tdp--, (5.3) 

S 

where t is a dimensionless constant, and p N m/d3. As the grain temperature p f l  
increases, the pressure rises, and conversely the pressure falls as the density decreases, 
as expected. 

Equation (5.3) has the basic form of Van der Waal’s equation of state, without the 
terms arising from the overlap of the attractive tails of the molecular potentials. This 
can be seen by rewriting s in terms of the density, using (3.2), and then substituting 
into (5.3). The result is 

(5.4) 

where N is the number of grains and V = Nm/p  is the volume. The quantity V, is 
like the usual excluded volume term, except that  i t  is less than the corresponding 
quantity appearing in the standard Van der Waal’s equation for dilute gases. The 
reason is that for close-packed systems each grain on the average excludes less volume 
than the same grain would in a dilute system. Although (5.4) is the more familiar, 
it turns out to be convenient to deal directly with (5.3). 

Similar results for an equation of state have been derived by other workers, often 
with much more rigorous treatment of grain collision geometry and kinematics 
(Ogawa 1978). It is our intent here to establish the dependences of quantities like 
pressure and viscosity, and of the flow and temperature fields as well, upon the 
dynamic variables of interest. It is perhaps premature a t  this time to invest too much 
rigour in calculating exact numerical coefficients, when fundamental problems, such 
as choosing the correct boundary conditions, still remain unsolved. 

p( Ti- V,) x constant N x $muz, 

5.2.  The coeficient of viscosity 

Here we wish to derive the dependence of 7 upon the variables appearing in our 
description of the system. This is done in the simplest way by considering two 
adjacent ‘layers’ of grains. The gradient of the flow velocity u is supposed to be in 
the y-direction perpendicular to these layers, so that on the average the upper layer 
moves with respect to  the lower layer with relative velocity Au. This is not meant 
to imply that motion necessarily occurs in these ordered assemblies, but is intended 
to focus attention on the difference in the mean velocities of neighbouring grains. 

When grain collisions occur between the two layers, an average net momentum of 
magnitude mAu in the x-direction (direction of flow) is transferred. Since the collision 
rate is GIs, the shear stress exerted by the upper layer, on the lower layer, in the 
x-direction, is mAu v 

d 2  s‘ 
0- N -- (5 .5 )  

The increment Au is the change in u over a distance of the order of d ,  so that 
Auld - duldy. Defining the stress as 

.li du 
s dy’ 

u = qd2p-- (5.6) 
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where q is a dimensionless constant, and comparing this two-dimensional example 
with the viscous-stress term in (4.3), gives 

B r = qd2p;, (5.7) 

as the expression for the viscosity coefficient. 
The viscosity depends upon v, the thermal velocity, which is the solution to  the 

energy equation (4.4), and thereby the coupling between the momentum and energy 
equations is made explicit. I n  the case of free flow, where U must be scaled by u, i t  
is clear that  r~ will be nonlinear in u, as anticipated. This leads to  the form of the 
stress law originally anticipated by Bagnold (1954), and derived again in similar form 
by other authors (e.g. McTigue 1978). However, i t  is clear from the development of 
(5.7) that, having gone as far as expressing 7 in terms of the collision rate U / S ,  i t  is 
now up to the equations themselves to supply self-consistently the precise form of 
the stress law, and we allow them to do so below. 

5.3. The coeficient of thermal diffusivity 

The thermal diffusivity coefficient K appearing in (4.4) can be found in a similar way. 
The energy flux due to  grain-grain collisions is the average net energy transfer per 
collision times the collision rate divided by the area. The mean energy transfer is 
miid@, where A@ is the difference in mean thermal velocity between neighbouring 
grains, and thus the energy flux is 

or (5.9) 

where r is a dimensionless constant. The term in (4.4) involving K is just the 
divergence of the internal energy flux, and thus we can identify 

v 
K = rd2- 

S 
(5.10) 

Note that in (4.4) this term does not involve the flow velocity u explicitly, and 
therefore in principle it is present even when there is no macroscopic motion of the 
granular system. It describes the transport of energy as ‘heat’. Jenkins & Cowin 
(1979) have described the necessity of allowing for the diffusion of ‘heat ’, and they 
introduced an equation analogous to (5.9). I n  their model, however, K was taken to 
be a constant. Here K, like 7 ,  remains to be determined by the equations themselves. 

5.4. The dlisional energy sink 

The other term in (4.4) that  is independent of u is I, representing the energy 
irretrievably lost to  the system due to  the fact that  grain-grain collisions are inelastic. 
Let e be the coefficient of restitution describing the collision of two grains. The relative 
collision velocity is of the order of V. Therefore, the loss of energy per collision is 

AE - ( 1 - e ” ) ~ ~ .  (5.11) 

Multiplying by the collision rate 2i/s and the number density n gives the rate a t  which 
energy is lost through collisions per unit volume per second: 

d 
I = yp-, (5.12) 

S 
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I \ \  Uniformly excited system 
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FIGURE 2. The thermal velocity v and the pressure p are plotted versus elapsed time for a 

system initially excited in a spatially uniform way. T = ~ ~ / 2 y ~ ~ , .  

where y is a dimensionless factor proportional to  1 - e2. The dissipation function has 
also been discussed by other authors (Ogawa 1978), but its importance has not been 
sufficiently emphasized. As shown below, a granular flow of even nearly perfectly 
elastic spheres, can deviate greatly from the flow of a similar fluid composed of exactly 
elastic spheres. 

6. Solutions of the equations of motion 
6.1. Uniformly excited system 

One of the simplest problems to analyse involves a system a t  some initial uniform 
temperature, characterized by a thermal velocity g(0) = go, which is then allowed to 
decay with time. There is no flow, so u = 0 everywhere, and all spatial derivatives 
vanish. Then, from (4.4), we have 

v3 

at s 
q $ l s ” )  = -yp-. 

The solution, illustrated in figure 2 ,  is 

(6.2) 
g0 q t )  = 

(2yU0 t / s o )  + 1 ’ 

where so is the (constant) mean grain separation (we take g = 0). The time-scale for 
decay is 

SO 7=- 
2yv0’ 

so that if the coefficient of restitution e is nearly unity, y x 0, and the system takes 
a long time to cool. The very slow rate of damping ( -  t-l a t  large t )  is due to the 
face that as the mean energy per particle decreases, the time between collisions, so/@, 
becomes increasingly long. According to (5.3), the pressure decreases, as shown in 
figure 2, in the following manner: 

Po 
[(3yv,t/s,) + 112’ P(t1 = (6.41 

where p ,  is the pressure a t  t = 0. 
This example is interesting because i t  illustrates the point, which we wish to make 
14 E L M  134 
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now, that the thermal velocity i j  need not always scale with a flow velocity u. Here 
tjhe scale is given by U,, and was introduced as an initial condition. In  other problems 
of interest, certain boundary conditions on u will need to be introduced, and these 
boundary conditions provide a vehicle by which a new velocity scale may be 
introduced. This is another reason for constructing the viscosity in the self-consistent 
way described above, because the flexibility of that formulation allows automatically 
for a variety of scaling possibilities. If the shear stress term is forced by hand to be 
bilinear in u, as is usually done, then whole classes of solutions are summarily 
eliminated. 

6.2. Steady-state system with no flow 
Another interesting and simple problem which does not involve macroscopic flow is 
to determine the steady-state temperature and density of a granular system 
contained between two large parallel plates separated by a distance h + d.  Because 
ofthe steady-state condition, all time derivates are set equal to zero. We assume there 
is no gravitational field g. The energy equation under these circumstances reduces 
to 

which says that in the steady-state condition with no flow, the rate a t  which energy 
is conducted into a volume must just balance the rate a t  which energy is lost in that 
volume by collisions. If x measures the perpendicular distance away from a confining 
wall located a t  z = 0, then (6.5) becomes 

V.(KV+piP) = I, (6.5) 

By taking the interior derivative in this equation, it can be seen that the factor i f2 / s  
appears on both the left-hand and right-hand sides. By (5.3), u 2 / s  is proportional to 
the pressure. Since g has been taken to be zero, however, the momentum equation 
(4.3) implies that the pressure is a constant : 

P =Po. (6.7) 

Therefore (6.6) is actually a linear equation for if, 

and the solution is 

d2if y - 

dx2 rd2" 

V(X) = U~ e-x/h3 

- 

where ij, is a constant and the lengthscale is given by 

h = (;)'d. 

(6.9) 

(6.10) 

In  writing (6.9) we have assumed h + A. 
This result requires some discussion. The quantity if22/s which was eliminated in 

favour of the pressure above recurs frequently in the examples worked out below. 
For zero-gravity problems with no flow the pressure will be constant, and therefore 
two powers of thermal velocity can always be eliminated whenever they occur, with 
a concomitant simplification of the energy equation. When the pressure is not 
constant, as is the case when an external force field is present, then v2/s can still be 
eliminated, but instead of a constant p,, a substitution involving a function of 
position, p + p ( x ) ,  will be involved. We could rewrite the energy equation in terms 
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of p directly, but this would require specifying models for K, 7 and I ,  and for the 
equation of state, at the very outset. We prefer to  leave the equation in the more 
general form as written, and then to  explore the consequences of a particular choice 
for the transport coefficients and equation of state. Other choices (corresponding to 
a dilute grain system with inelasticity, say) can then be made as desired. 

In  arriving a t  (6.9) we have applied the boundary conditions @(h)+O and @(O)+u0. 
The boundary condition a t  x = 0 corresponds to requiring that the mean random 
velocity B have a constant value a t  the wall, and therefore energy must be supplied 
there to balance the rate of energy absorption in collisions. I n  a true fluid, constant 
velocity go would correspond to maintaining the wall a t  a constant temperature. At 
the microscopic level, random vibrations of molecules a t  the surface of the wall supply 
energy to  fluid molecules through collisions. The wall bounding the granular system, 
however, is in general not composed of other grains all vibrating at random and 
independently, so that i t  is difficult to  produce a precise analog of the molecular 
energy transfer mechanism for the granular system. I n  writing down the solution 
(6.9), we are merely demanding, without regard to  the problems that would face the 
experimentalist, that  a certain random velocity characterize grains very near the 
bounding surfaces. In  attempting to  actually produce this condition one might, for 
example, fix the wall roughness to have the same scale as a typical grain diameter 
d.  The wall could then be driven by an appropriate shaking device, with mean 
amplitude on the order of or less than d,  and with a suitably random frequency 
spectrum. A mixture of vertical as well as horizontal displacements, with respect to 
the wall boundary, would be desirable. Even with these refinements, the motion of 
each element of the wall is highly correlated with that of every other element, and 
therefore i t  may be difficult experimentally to insure that a random velocity field is 
produced. 

In  fact, in a standard shaker experiment with perpendicular wall motion, especially 
if the motion is large compared with a grain diameter, it is likely that coherent grain 
motion will be produced. This motion will carry momentum away from the wall in 
an organized manner, and corresponds to the generation of a sound wave, with the 
grains as the elementary entities supporting the wave. While wave propagation is 
certainly subsumed under the set of equations (4.1), (4.3) and (4.4), it is not what 
we are investigating in the present example. Care must therefore be exercised in the 
comparison of predictions involving boundary conditions on fi with standard shaker 
experiments. 

From (6.10) the effect of the energy loss in grain-grain collisions can be seen. The 
lengthscale over which the random thermal velocity falls from its value a t  the wall 
to  i/e of that  value is a multiple of the grain diameter d.  I n  order for the continuum 
picture to  obtain, the condition h $- d must be true. This requires that, r / y  b 1, a 
condition independent of v0 as long as the coefficient of restitution is not velocity 
dependent. To order unity, this is equivalent to requiring that the coefficient of 
restitution e be very nearly unity. Thus because of the exponential way in which the 
surface disturbance is damped in the interior of the system, only grains which are 
nearly elastic will rigorously satisfy the conditions of the continuum hypothesis. If 
the grains are only moderately elastic, or are quite inelastic, then i t  is not in general 
possible to carry through the present analysis unmodified. What would be required 
in these latter cases would be to  treat this thin transition layer separately - as in the 
treatment of a boundary layer in fluid mechanics - and then to  match boundary 
conditions between this layer and the rest of the system at a suitably chosen point 
away from the wall. In  the remainder of the paper, however, we specialize to very, 

14-2 
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FIQURE 3. Illustration of the definition of the free-space parameter Ah for a channel of width h. 

but not totally, elastic particles. We note that this condition can be relaxed somewhat 
for shear flows, where the internal generation of thermal energy can occur over 
distances large compared to  A. 

Finally, it  is necessary to  check that s 6 d.  Again eliminating @(x) in favour of the 

(6.11) 
(constant) pressure p,, we have v”0 tap s = -e-2x/h 

PO 
and therefore we require 

Po u; 6 -. 
tP 

(6.12) 

Unfortunately this relation cannot yet be used, because the value of p ,  is unknown. 
I n  an elastic grain system, or in a molecular gas, it would be unnecessary to supply 
power to the wall in order to  maintain a given temperature, but rather, the 
temperature, density (i.e. s) and pressure would be constant throughout the volume. 
The pressure would then be determined from a knowledge of s = so and @ = go. 
However, for an  inelastic grain system, s and @ are not constant. In  order to  determine 
p ,  we need one further piece of information, the total amount of free volume available 
to accommodate grain motion. 

Imagine that all the grains in the channel are pushed, as illustrated in figure 3, 
to the right into a state where each grain touches its neighbours. The gap which 
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develops between the wall and the surface of the packed grains is denoted by Ah. If 
for the moment we denote by pa the constant density of packed grains, and byp  = p(x) 
the density of grains found above for the vibrating wall, then 

Joh Ax) dx = JrAh pa dx. (6.13) 

Using (3.2), and setting pa x m / d 3 ,  as in (3.31, we have, if s 4 d as is to be required, 

A h = -  s(x)dx. (6.14) 

The quantity Ah is a new parameter whose value i t  is necessary to  know in order to 
completely specify the state of the system. For all problems of the kind discussed 
in this section, and in many other problems as well, the ‘free-space’ parameter Ah 
must be supplied. Knowledge of Ah is equivalent to knowledge of the number of grains 
per unit area in the channel. 

Applying the relation given by (6.14) to (6.11) yields 

A 
Ah 

pa  = gtppvt-, (6.15) 

so that the pressure is proportional to the energy density at the surface. Combining 
(6.15) and (6.12) then gives, as the condition that s 4 d everywhere, 

A 
--4 1. 
Ah 

(6.16) 

Equation (6.16) expresses the physical requirement that  if the total distance over 
which grains are dispersed is much greater than the total ‘free distance’, then the 
grains must be close together. In  this example there is no limitation to the values 
which v0 may assume. 

The density parameter s is written explicitly from (6.11) and (6.15) as 

(6.17) 

so that the density profile is independent of the way in which the grains a t  the 
bounding wall are excited. 

6.3. Steady-state system with no flow in gravitational ,field 
Here we imagine a bounding surface a t  x = 0, perpendicular to the gravitational field 
g, as illustrated in figure 4. A layer of grains of thickness ha, ha 9 d ,  is put on the 
surface, and the floor is then vibrated in such a way that the grains near the boundary 
have thermal velocity c0. The thickness of the layer then increases from ha to some 
height h,t whose value will depend upon fro. Arguments similar to  those used to derive 
(6.14) lead to the equation 

h = ha + - ~ ( 2 )  dx, (6.18) x 
which will be found useful for the complete specification of the solution. 

t This is one case where the importance of coordination number and packing geometry is criticaI 
for a realistic analysis, since a (moderate) vibration applied to loosely-packed grains will cause the 
final height h to be less than h,. Here we must imagine starting from a close packed configuration. 



416 P. K.  Haff 

Final grain level _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ x = h  

FIGURE 4. Illustration of the expansion of an initially packed configuration, in a gravitational field, 
upon supplying energy a t  the bottom plate (z = 0). The free surface rises from z = h, to r = h.  

According to the momentum equation (4.3), the pressure a t  any point in the fluid 

(6.19) 
is 

where p, is the applied pressure at the top surface and 

P(X) = pg(h - 4 +PO = p g w  - 4, 

h’ = h+p,/pg. (6.20) 

For a free surface p ,  = 0, but for the moment i t  will be convenient to carry along 
the extra constant term. 

The energy equation reduces to (6.5), but since p is no longer constant, the 
substitution for f i2 / s  leads to a result different from (6.8), namely 

d2v 1da  -+---fi = 0, 
dz2 zdz 

where z is a dimensionless variable given by 

h - X  

A ’  
z=- 

(6.21) 

(6.22) 

The solutions to (6.21) are the modified Bessel functions of zero order, I,@) and KO(%). 
Let us try the boundary condition u(0) = 6,, as before, but, at the upper surface, 

let the energy flux Q vanish (5.9), i.e set 

(6.23) 

This would be the usual condition at a free surface. Taking the derivative and 
rewriting in terms of the pressure gives 

[p(x)g] = 0. 
h 

(6.24) 

If p, = 0, then (6.24) is evidently satisfied automatically since p(h) would be zero. 
This corresponds to 6(h ) / s (h )  = 0. In  this case x-th corresponds’ to z+O. As the 
function KO(%) is singular here, a(z) must be given by I ,  alone. But because I ,  does 
not vanish a t  z = 0, fi(h) is non-zero. The only way in which p(h) can vanish then is 
if s(h) + co. This clearly violates the condition s < d .  The basic problem we have 
encountered is the breakdown of the cell model a t  a free surface. Any impulse, 
however slight, in the upward direction, will allow a particle to move off unhindered 
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to infinity. There is a physical analogue to this situation which is actually encountered 
under certain vigorous flow conditions in chutes, where jostling of grains a t  the 
surface leads to the development of a thin upper layer of particles which are dispersed 
many grain diameters apart from each other. This phenomena, which may be termed 
gravitational saltation, is made possible by the accessibility of free space a t  an open 
surface. 

I n  fact, the upper layer of grains does not move off to infinity because i t  is 
restrained by the gravitational force; a particle receiving an upward impulse at the 
surface moves on a ballistic trajectory and shortly returns a t  some other point. There 
is no room in the model we have presented so far to  account for these gravitational 
effects. Gravity is included in the momentum equation (4.3) and the energy equation 
(4.4), but these equations refer to momentum and energy attributes of '  fluid particles' 
which themselves contain many grains. They do not refer to momentum and energy 
properties of individual grains. Thus, the equation of state (5.3) and the various 
transport relationships developed earlier do not contain any dependence on g .  This 
is a good approximation so long as the grain trajectory between collisions is 
essentially a straight line. This will be true if the grain kinetic energy is much greater 
than the change in gravitational potential energy experienced over a distance s ,  which 
is the mean distance between collisions, i.e. if 

62 
- 9  1 .  
BS 

(6.25) 

I n  terms of the pressure this can be written as 

(6.26) 

which says that p must substantially exceed the force required to  lift a grain through 
its own diameter. The expression appearing on the left-hand side of (6.25) is a 
microscopic version of the Froude number. The Froude number itself is of the form 
F = u2 /g1 ,  where u is a typical flow velocity and 1 a characteristic macroscopic length 
in the fluid system. If F 9 1 ,  then gravitational effects are generally not of major 
importance. The value of the microscopic Froude number, which we may represent 
by f = e2/gs, tells whether the effects of g must be included in the description of a 
system a t  the level of the individual grain. I n  most fluid systems, f 9 1 ,  because 
thermal velocities are high.t However, in the example of this section, the requirement 
that s+ a3 in order that the pressure may vanish a t  x = h leads to f 5 1 .  Thus, if we 
wish to specify in detail the behaviour of the granular system near its free surface, 
we would need to modify the equation of state, the thermal diffusivity, and so on. 
This generalization would presumably allow for a consistent accounting of the effects 
of grains on ballistic (i.e. curved) trajectories a t  the surface. 

Generally, f will be small only in a thin layer a t  the surface. Below this region, 
f 9 1 ,  and (5.3) is valid. We may therefore think of gravitational effects as producing 
a kind of boundary layer a t  the free surface, which may be called the saltation layer. 
Since a different equation of state characterizes this part of the system, i t  can be 
thought of as essentially a different fluid from that comprised by the more dense 
material below. Our approach then will be to treat the material which comprises the 
bulk of the system, between x = 0 and the bottom of the saltation layer, according 
to (5.3), and to take account of the existence of the saltation layer through 
appropriate boundary conditions. 

t Note that f $ 1 and F 6 1 can be mutually consistent conditions. 
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For a grain layer h’ that is sufficiently thick, a modest input of energy a t  x = 0 
will produce no significant thermal vibration near the surface. If we imagine that 
h < h‘ is the height below which saltation effects can be ignored, and if we denote 
by p ,  the pressure a t  h, then 

h = h’-% (6.27) 

from (6.20). If @(hi x 0 here (and the energy flux Q x 0 also), then, because 1, is an 
exponentially increasing function of its argument for large z (1 , ( z )  - (2nz)-$ez as 

PS’ 

(6.28) 

where 6, is the velocity maintained a t  z = 0, and, since we take h 9 A,  @(h) x 0. In  this 
case, however, we might as well write 1, in its asymptotic form to get 

(6.29) 

which is similar to the earlier result (6.9) obtained in the absence of gravity. This 
result will apply up to  some height which is less than h‘, the true top of the layer. 
For modest energy input a t  x = 0, however, h‘ and h will be practically coincident, 
a t  least to within a few grain diameters. Thus for practical purposes, when the 
externally applied excitation is not too large, (6.29) will be valid over the entire 
volume, except within a few grain diameters of the surface. 

The density function s is given by 

tdh’$ e-2xfA 
S =  

g(h’-x)2 ’ 
(6.30) 

so that the density is smallest at x = 0, and increases toward the surface. If h 4 h, 
then s essentially goes to zero before the top surface is reached. Ifp, is taken equal 
to zero, and h’+h, then the ‘saltation’ spike at z = h is clearly seen in (6.30). 

The height h of the layer, for a given value of Go, and for h‘ x h,, is found from (6.18) 
to be 

(6.31) 

The expansion h, - h, increases with the temperature +m@; a t  the bottom of the layer, 
but scales inversely with the strength of the gravitational attraction. A thinner initial 
layer h, will expand, for a given v,, more than a thicker h,, because in the latter case 
the increased weight of the overburden serves to  compress the fluid near x = 0 ,  where 
most of the expansion occurs. 

Finally, we need to check under what conditions s 4 d is true. From (6.30), 
evaluated sufficiently far from the free surface, this may be stated as 

3 . g  1 ,  
Sho 

(6.32) 

which says that the wall vibration must be much less than that vibration which could 
be capable of tossing a grain to a height h,, or, for a given U,,, that either gravity or 
the thickness of the layer must be great enough to  keep the grains near the bottom 
under sufficient pressure that they cannot move far apart from one another. This 
condition can be expressed another way by combining (6.31) and (6.32); i.e., in order 
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't 
Couette flow geometry 

h 

Bottom plate at rest X 

FIGURE 5.  Illustration of Couette flow geometry. We look for solutions which depend on the 
transverse coordinate y only. The free-space parameter is Ah, as in the static example of figure 3. 

that  s 4 d, the absolute linear expansion h - h, must be small compared with the scale 
length imposed by the inelasticity of the grain collisions : 

h-h, 4 A. (6.33) 

6.4. Steady-state Couette jlouj with no gravity 

I n  this subsection we consider a grain system enclosed by two parallel plates which 
move with constant velocity U with respect to  each other. We look for steady-state 
solutions. The plate separation h is constant, and to be definite we take the lower 
plate to be a t  rest. Figure 5 illustrates the coordinate system; the y-axis is 
perpendicular to  the plates, while the x-axis is parallel to  them. The system is of 
infinite extent in the x- and z-directions. We search for solutions of the equation of 
motion that depend only on y. 

Since 7 = q(y), the y-component of the momentum equation gives dpldy = 0 so 
that the pressure in the channel is constant : 

(6.34) 

In  a similar way, an examination of the x-component of (4.3) shows that the shear 
stress is a constant throughout the system : 

v 2  
p = P O  = tdp-. 

s 

du 

CT = CTo = 7d,. 
The energy equation reduces to 

(6.35) 

(6.36) 

As illustrated in the previous no-flow examples, the pressure expression (6.34) can 
be used to eliminate powers of V in (6.36). We also find that the shear-stress relation 
(6.35) is useful in eliminating explicit reference to the flow velocity u in (6.36). Thus 
by incorporating (6.34) and (6.35) into (6.36) we have 

(6.37) 
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where 
t2u; y 

w2 = __-- 
rqd2p; rd2' 

(6.38) 

The frequency w is constant, but its value is not yet known, because the ratio u,/p, 
remains unknown. Equation (6.37) is therefore an eigenvalue equation. 

Boundary conditions are taken as follows. For the flow velocity u(y ) ,  which is 
always in the x-direction, we simply demand that 

u(0) = 0, (6.39) 

u(h) = 17. (6.40) 

These equations reflect the usual fluid-mechanical requirements that  the fluid a t  a 
surface follow the motion of that  surface. For a granular system, i t  is possible that 
slippage occur a t  a bounding plane, in which case the grain flow velocity would be 
different from the wall velocity. However, for a sufficiently rough surface, which we 
postulate here, (6.39) and (6.40) should be correct. 

The boundary conditions on v are harder to  specify with confidence. A complete 
solution of the motion would replace an  outright specification of ?j at the boundary 
with some criterion involving the nature of the grain-wall interaction. Such a 
criterion is not presently a t  hand. Nevertheless, i t  will be recognized that there is 
utility in the examination of solutions to the flow equations even if somewhat 
arbitrary boundary conditions must be invoked. I n  fluid mechanics the number of 
analytically soluable problems is so small that  nearly any such solution is of some 
interest. In  granular mechanics the number of analytical solutions is even smaller. 
Thus exact solutions of kinetic theories of grain flow are felt to be worth the price 
of some uncertainty as to  the realism of selected boundary conditions. 

Here, we set U equal to zero (with one exception, as discussed below). This has the 
advantage that such boundary conditions are relatively easy to work with, and that 
one can imagine constructing a wall so that grain vibration there is minimized 
(Jenkins & Cowin 1979). (The wall should be 'soft' in order to make the coefficient 
of restitution for a grain collision with the wall small.) One could equally well choose 
B to have non-zero boundary values, but such a choice is more tedious to work with, 
and would provide no new qualitative understanding. 

We note from (6.38) that  evidently u2 can be either positive or negative. Assume 
it is negative: then the curvature of v within the channel is positive (the solutions 
are exponentials). Since B is an intrinsically non-negative quantity, we cannot require 
that vanish at both x = 0 and x = h, unless 6 = 0 everywhere. For w2 < 0, then, 
let us try 

V ( 0 )  = V,, (6.41) 

$h) = 0. (6.42) 

This situation corresponds to vibration of the lower stationary plate only. The upper 
plate is imagined to be 'soft ' so that grain-plate collisions are effectively damped. 

Since the solution decreases monotonically between y = 0 and y = h,  d@/dy is 
negative everywhere. The energy flux is Q = -Kpo(dti/dy). Since K > 0, we have 
Q > 0, and therefore energy flows from y = 0 toward y = h, just as heat would flow 
from a region of high temperature to a region of low temperature. The source of the 
energy is the externally applied vibration of the lower plate. 

In  the limit 2, -+ V ,  and wh + 1 (to be checked later on), we find 

(6.43) 
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which satisfies (6.37) and, approximately, the boundary conditions (6.41) and (6.42). 
The flow-velocity gradient is related to B by 

(6.44) 

and the integration of this equation, together with (6.38), gives 

1 
(6.45) % h '  

and thus 
(6.46) 

The condition wh %- 1 thus becomes h % A,  which is usually satisfied easily, and we 
get the thermal velocity explicitly 

V (  y) = v0 e-ylh, (6.47) 

which is identical to the result obtained in the static examples considered above. By 
going to the limit U 4 e, we have retained only the effect of wall vibration on e; the 
next-higher-order term in U/@, would begin to  show the effect of the flow pattern 
itself upon the thermal velocity field. 

The pressure and shear stress are calculated to be 

d 
Ah 

= &pBo u- 

(6.48) 

(6.49) 

The pressure p,  is independent of the flow velocity, for small I J ,  and is determined 
by the energy flux a t  the lower wall. The stress uo is directly proportional to  the speed 
U at which the upper plate moves. Equations (6.48) and (6.49) are thus analogous 
to the hydrodynamical solutions for Couette flow. This is a reasonable result because 
in ordinary hydrodynamical systems the flow velocity is much less than the molecular 
thermal velocity. We can see in this example the advantage of treating the 
momentum and energy equations on an equal footing. If in the momentum equation 
the shear stress term had been forced by hand to be quadratic in U ,  then u would 
have scaled with [I2, i.e. i t  would not have been possible to go to  the hydrodynamical 
limit. 

Finally, the actual flow pattern of course is not hydrodynamical, because of the 
importance of grain inelasticity : 

u(y) = U(I -e-Y/A). (6.50) 

Since the scale distance h is much less than the channel width h,  the region of 
fluidization i s  confined to a t,hin layer of thickness NN A near the lower plate. Most of 
tile matter in the channel moves as an essentially non-deforming plug. 

We turn now to the case of high flow rates. If the shear stress u is large enough, 
it is not unreasonable to expect that enough thermal energy would be generated 
internally in the grain system by friction to require conduction to  the plates. L '3' ince 
the internal energy flux, as discussed above, is proportional to duldy, a negative 
curvature for B is required in order for heat to flow out of the channel. This 
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Couette velocity fields 
No  plate vibration 

3 

Dimensionless distance from lower plate y / h  

FIGURE 6. The thermal and flow velocities for the Couette flow example illustrated in figure 5 are 
plotted versus distance from the lower plate. The thermal velocity F is set equal to zero at each 
plate. 

corresponds to w2 > 0 in (6.37), i.e. to oscillatory solutions. To be definite, the 
boundary conditions on B can be taken to be 

V ( 0 )  = a@) = 0, (6.51) 

although this choice is not essential. 
The thermal velocity 0 has the solution 

0 = a. sin wy, 

w = x / h .  
where a is a constant and 

(6.52) 

(6.53) 

The pressure p ,  and shear stress go  are constant throughout the flow volume. 
Integrating (6.44) to  obtain the flow velocity and applying the boundary conditions 
in conjunction with the free-space relation (6.18) give the following explicit expressions 
for the thermal and the flow velocities: 

XY 

(1 + h2/x2h2)i h 
U sin - , 

1 

u ( y )  = : u ( l - c o s ~ ) .  

(6.54) 

(6.55) 

The velocity U of the upper plate is the only velocity in the problem, and therefore 
i t  scales both 0 and u, as anticipated. Figure 6 illustrates these two velocity fields. 
The conduction of friction-generated energy from the interior of the flow to the plates 
is clearly demonstrated. For modest values of 0 a t  the plates, the same general kinds 
of solutions could be obtained. 
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Formulae for the pressure and stress are obtained in the course of solving for v and 
u ;  we find that the pressure is given by 

(6.56) 

(6.57) 

I n  (6.56) and (6.57), for the first time, the expected quadratic dependence on velocity 
appears. 

Note that knowing the shear stress and pressure we can calculate the ratio of 
frictional to collisional energy loss rates, 

(6.56) 

Since cr, andp, are constants, the loss-rate ratio is the same everywhere in the system. 
Recalling the expression (6.38) for w 2 ,  we see that this quantity can be written in 
terms o ~ & , / I  as 

(6.59) 

If, within a given volume, the collisional loss of energy exceeds the frictional loss, 
w2 is negative, and there must be a net flux of internal energy via conduction into 
the interior of the channel in order to  sustain steady-state motion. These are the 
positive-curvature solutions considered earlier. If the frictional loss should exceed the 
collisional loss, then an excess of internal energy is generated per unit volume, and 
net conduction toward the walls must occur. These solutions are the ones of negative 
curvature. 

Finally we need to check under what circumstances the condition s + d is satisfied. 
The density parameter s is given explicitly as 

s = --Ahsin2--. 2d nY 
3 h  h, 

(6.60) 

Therefore the present description will be valid if 

Ah 6 h. (6.61) 

This condition is easier to  satisfy than the relation Ah < h which characterized the 
solutions for the case 8, + U.  In the latter example, strong plate vibration generates 
high porosity and low density in a very limited region, so that i t  is easy to  force s 
to exceed d in the vicinity of the plate. However, according to (6.60), the decrease 
in density for high flow rates (11 + fro) is spread much more uniformly over the channel 
region, and therefore a much larger value of the free space parameter Ah is tolerable. 

6.5. Plug formation in Couette $ow 

There is always the possibility that a t  certain places within the channel grains may 
become so closely packed that effects of Coulomb friction (which we have not treated 
fully) dominate over collisional energy loss. In  this case, there may arise regions where 
grain separation goes to zero, so that a 'plug' forms. Indeed, in the limit s < d that 
we have been discussing, one may argue that, for many or most materials, plug 
formation is likely. The limit of closely packed grains moving without plug formation, 
is, of course, a very useful limit to  explore, and we have done so in this paper. 
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Nevertheless, it  is worthwhile to  consider what the present model has to say about 
the existence of plugs. 

Imagine that a group of grains becomes joined together in a thin layer along the 
upper plate, so that the region between y = yo and y = h is composed of grains in 
the state s = 0. The grains do not move with respect to the plate y = h, and therefore 
the situation is as if the remainder of the granular fluid were being forced to flow 
between plates separated by a distance yo instead of h. If the plug were stable, the 
solutions for the velocities U and B, and for the forces g o  and p,, could obviously be 
transcribed so that they applied to this new channel of decreased width. 

Whether the plug is stable or not depends upon whether the forces deriving from 
the interlocked grains are strong enough to resist the shearing force u, associated with 
the grain flow. The precise stability criterion is not known, but, to  be definite, let 
us assume that if (r, is less than a ‘critical ’ shear stress 

2 0  = PPO (6.62) 

then the plug is stable. Here ,u is a dimensionless constant which depends on the 
properties of the plug (not calculable in the present model) and p ,  is just the internal 
pressure. Zo need not have this form; i t  might be taken simply to have a constant 
value. In  any case, a criterion such as 

fT, = c,, (6.63) 

provides the extra condition needed in order to  determine the value of yo. 
There is still an indeterminancy in the problem, however, because the plug could 

form a t  the lower plate (y = 0) instead of the upper plate. The value of yo calculated 
from (6.63) just tells us the width of the flow zone, but there is no way to predict 
where that zone will lie. It could lie in the middle of the channel, and be bordered 
both above and below by plugs. 

There is yet a more complicated possibility. In  (6.53) we have solved the eigenvalue 
equation for the thermal velocity B by requiring that w = x / h .  However, if zones of 
plug formation are allowed, there is no reason why eigenvalue conditions like w, = 
nx/y, might not be valid, where y, is the width of a particular flow zone, and n is an 
integer. Thus, under appropriate conditions, a number of alternating flow zones 
separated by rigid (but generally moving) plugs may appear. Again there is a certain 
amount of indeterminancy associated with the number and position of these zones. If 
they exist, we can discuss their stability, but i t  is not possible to predict where within 
the channel they will lie. 

Although these considerations are interesting, and may have significant effects in 
many realistic systems, we limit ourselves here to a discussion of systems for which 
closely packed grains exhibit no additional shear strength beyond that due to 
collisions. 

6.6. Steady-state Couette $ow in a gravitational Jield 

Here we consider the same problem addressed in $6.4, except that  the gravitational 
fieldg is present. For simplicity, g is taken to be perpendicular to  the confining plates. 
I n  the usual way the pressure is found to be 

P ( Y )  = Pg(h-Y)+Po,  (6.64) 

where p ,  is the ‘extra’ (constant) pressure which will be generated by the relative 
motion of the plates. The shear stress u, = 71 duldy is again constant, and substitution 
into the energy equation for derivatives of the flow velocity u gives the equation for 
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thermal velocity zi. Performing a similar substitution for the pressure, which is not 
constant, in order to eliminate higher powers of 8, leads to the equation 

where 

h’-y 
h 

* - -  * -  

The length h,’ is greater than the width of the channel 

(6.65) 

(6.66) 

(6.67) 

h’ = h+p,/pg. (6.68) 

Equation (6.65) has solutions which are modified Bessel functions of purely imaginary 
order I,, and K,,, with v given by (6.66). However, because the solutions cannot be 
expressed as a finite combination of elementary functions, which solutions are the 
main object of this paper, we turn our attention to the simpler problem of perfectly 
elastic grains undergoing Couette flow in a gravitational field. In  this limit (6.65) can 
be written as 

d2v 1 dV c2 -+--+-w = 0, 
dz2 z dz z2 

where 1 ta, c = 11’1 = -~ 
(rd PSd’ 

and, redefining the variable z ,  
h,’-y 

a .  
* - -  u -  

(6.69) 

(6.70) 

(6.71) 

The solutions to  (6.69), with boundary conditions given by (6.39), (6.40) and (6.511, 
are 

while the constant components of the pressure and stress are given by 

The constant z ,  is given by 

3 4  a 
a, = -ypu2- 

8 r2 Ah. 

(6.72) 

(6.73) 

(6.74) 

(6.75) 

(6.76) 

Note that neither ii nor u are linear functions of the plate velocity t7. This is not 
the case when gravity is absent: according to (6.54) and (6.55) v and u are simply 
proportional to U when g = 0. In the presence of a gravitational acceleration, 
however, an extra time dimension is introduced into the problem, and it can be 
compensated for only by the appearance of extra factors of ti. 
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Thermal velocity 

U = 30 cm/s 

0.2 0.4 0.6 0.8 1 .o 
y lh  

FIQURE 7. Illustration of the thermal velocity for Couette flow in a gravitational field, for two 
different velocities U of the upper plate. At the higher plate velocity, U = 100 cm/s, the shape of 
the thermal velocity curve resembles that found in the absence of a gravitational field (figure 6). 
A t  lower plate velocities, the fluidization is most pronounced near the upper plate. In these 
calculations Ah = 1 cm, g = 1000 cm/s2 and q = r = t = 1. 

U - 
U 

Flow velocity 
1.0- 

0.5- 

0 0.2 0.4 0.6 0.8 1 .o 
ylh 

FIGURE 8. Illustration of the flow velocity U for Couette flow in a gravitational field, for two 
different velocities U of the upper plate. At the higher plate velocity, U = 100 cm/s, the shape of 
the flow velocity curve resembles that found in the absence of a gravitational field (figure 6). A t  
lower plate velocities, most of the shearing occurs in the upper part of the channel. In these 
calculations Ah = 1 cm, g = 1000 cm/sz and q = r = t = 1. 

Figures 7 and 8 illustrate the behaviour of and u respectively, for two different 
values of the plate velocity U .  The main effect of the gravitational field g is to shift 
the principal region of thermalization from the centre of the channel toward the upper 
plate, and thereby to cause the principal zone of shearing to lie nearer the top plate 
than the bottom one. 
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Speed of sound 
in Couette flow 

Y (cm) 
FIGURE 9. The speed of sound is plotted versus position in the channel for zero-gravity Couette 
flow characterized by the following parameters IT = 10 cm/s, h = 10 cm, Ah = 1 cm, y = 0.5, 
d = O . l c m a n d q = r = t =  1. 

7. Supersonic flow 

expression 
The speed of sound V in flowing granular material can be estimated from the 

d 
V x B-. (7 .1)  

S 

V is much larger than V because most of the path length of the sound wave is within 
the grain itself, and the speed of sound within a single grain can be taken to be infinite 
for our purposes. By taking characteristic values of i?, d and s in a Couette flow 
geometry, one can show that a t  the centre of the channel V exceeds the flow velocit>y, 
for elastic grains, by about an order of magnitude. But for realistic inelastic grains, 
V is slightly less than the flow velocity. Thus we come to the important conclusion 
that kinetic grain flow is intrinsically a supersonic phenomenon. 

This conclusion is true if ii vanishes or is small a t  the boundaries. If the grain system 
is externally fluidized by vibration of the walls, or if the walls are good insulators 
(in the granular sense), then the value of @ both a t  the walls and in the channel interior 
will increase, while the density s remains unchanged, so that  B could exceed u 
everywhere. 

Actually, from (7 .1)  we can obtain an idea of the magnitude of the speed of sound 
not only a t  the centre of the channel, but everywhere between the plates. Substit'uting 
for s and v from (6.54) and (6.60) respectively gives 

37[: h u 
4 Ah sin (nylh)  ' 

V=--  

if y is not too small. Thus the speed of sound is smallest a t  the centre of the channel, 
and according to (7.2) becomes large without limit a t  the walls. The supersonic region 
is accordingly confined to a limited zone within, but not extending to, the edges of 



428 P. h’. Haff 

the channel. Of course, a t  the edges, V does not actually diverge, but approaches the 
velocity with which sound would be transmitted through a network of mutually 
touching grains. 

The extent of the zone over which the flow is supersonic is determined by the 
relation 

(7.3) 

where u is given by (6.55) in the present example. This can be simplified to the 
condition 

h “’( h ?) Ah, 
sin- 1-cos- >&-, (7.4) 

which does not involve the plate velocity U. For elastic grains, h + 00, and the flow 
is always subsonic, no matter how fast the wall moves. However, for grains with a 
realistic coefficient of restitution, the condition (7.4) is often satisfied over some region 
since h/Ah is usually a small quantity. The speed of sound is plotted in figure 9 for 
the case y = 0.5. 

These results mean that a small disturbance created in the central region of the 
channel under conditions of steady flow will propagate only in the downstream 
direction. Perturbations applied in the subsonic boundary layers, however, will be 
able to propagate in both directions. Finally, the placement of obstacles in the flow 
channel will result in the generation of shock waves. 

8. Conclusion 
The above developments represent an attempt a t  a systematic description of one 

type of grain flow, where relatively elastic grains are very close to, but in general not 
touching, other neighbouring grains. A crucial step in arriving a t  a self-consistent 
description is the explicit inclusion of the energy equation. This involves introduction 
of the variable zi, the ‘thermal ’ velocity. I n  solving various problems, somewhat 
arbitrary boundary conditions on have been assigned, and i t  remains for the future 
to decide how these conditions will be applied in realistic cases. For experiments 
involving energy supply to the granular medium through the boundaries, it is as yet 
unclear how closely the coherent vibration of container walls will simulate the picture 
of a random excitation of near-boundary grains as described in the preceding sections. 

This paper has been restricted principally to a consideration of analytic solutions 
to certain static and steady-state problems. This has usually meant, especially in the 
case of non-zero flow fields, that  i t  was possible to solve only for elastic grains in a 
gravitational field, or for inelastic grains without gravity. Since all laboratory 
experiments must involve inelastic grains and since most experiments must also be 
performed in a gravitational field, it  is not generally possible to compare the present 
calculations with the result of flow experiments, even if the uncertainties over the 
proper boundary conditions are resolved. 

In  spite of these imperfections, i t  is felt that the results of the present paper 
represent a positive step in the understanding of grain flow under certain rheological 
conditions. Thus the critical importance of including grain inelasticity even for a 
qualitative description becomes evident. And the prediction that grain flow is 
supersonic may lead to new ways of thinking about standard grain-flow problems. 

There are many areas in which further investigation is required. These include the 
theory of sound propagation and damping in a fluidized system (since energy influx 
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a t  a vibrating boundary may be best described in terms of sound waves), and tjhe 
treatment of gravitational flows with a free surface. A difficulty encountered in 
attempting to treat this latter flow pattern is that, as in the example of $6.3, a non-zero 
‘thermal ’ energy at the free surface leads to a saltation-like effect (‘gravitational 
saltation’). Here, in a thin layer, the density goes rapidly t’o zero, and this surface 
boundary layer must be treated on a separate footing from the bulk of the flowing 
material. 

I n  addition to remedying specific problems of the particular model presented here, 
one also has a general desire to  improve the fundamental basis of the model, which 
a t  present is entirely heuristic, by appeal to a more detailed microscopic approach. 
Further developments remain for the future, but it is hoped that the present work, 
in spite of its limitations, will serve as a useful point of departure for more detailed 
investigations of granular flow. 

Many of the results of this paper sprang from discussions with C. E. Brennen, 
S. E. Koonin, R. Shreve, T. A. Tombrello and C. C. Watson. Partial support was 
provided by the National Science Foundation (PHY 79-23638). 
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